Biochemical Pathways in Cancer

نویسندگان

  • Eun-Kyoung Yim Breuer
  • Mandi M. Murph
  • Rolf J. Craven
چکیده

The revolutionary advances in cellular and molecular biochemistry in the last quarter century have provided an unprecedented opportunity for systematic approaches to understand the cancer process. With these new advances and the knowledge acquired as a direct result, an enormous impact has positively affected the clinical areas of cancer prevention, disease management, and treatment of malig-nancy. Despite these scientific achievements, we are still faced with the challenge of fully understanding the complex nature of cancer, including issues of disease recurrence and drug resistance. Therefore, dissecting biochemical pathways that underlie the development of cancer should be given high priority to improve knowledge of human health. In this special issue, we will explore the various aspects of cancer-related biochemical pathways. The papers in this issue discuss multiple signaling pathways involved in the regulation of proliferation, senescence, and death of cancer cells. M. K. Altman et al. demonstrated that the regulator of G-protein signaling 5 (RGS5) is able to reduce the proliferation of ovarian cancer cells and extend the survival of mice. The tumor suppressor p53 plays an essential role in cell proliferation , cell cycle progression, cell death, and senescence [1, 2]. Reisman et al. reviewed the evidence that DNA-binding factors RBP-Jκ and C/EBPβ-2 transcriptionally activate p53 to ensure a rapid cellular response to DNA damage. p53 is also involved in complex networks of mitotic kinase signaling in response to mitotic spindle damage to ensure the proper cell cycle progression. a mutual regulation network between mitotic kinase and p53 signaling. The tumor suppressor p16 INK4A has shown to be implicated in replicative senescence. Here, the role of p16 INK4A in replicative senescence and DNA damage-induced premature senescence in the absence of p53 was reviewed by R. Mirzayans et al. The authors also discussed a possible existence of a negative regulatory relationship between p53 and p16 INK4A. R. Jäger and H. O. Fearnhead reviewed cancer cell proliferation and death in a different point of view. These authors suggested that cancer cell proliferation might be a consequence of inappropriate or corrupted tissue-repair programs, initiated by a signal from dying cells. Mounting evidence suggested that dissecting the biochemical process of genetic alterations will help us understand mechanisms underlying the genesis and spread of cancer and develop novel strategies for targeted therapy and tailored cancer management [3, 4]. J. L. Johnson et al. discussed the genetic and biochemical alternations in heterogeneous cell signaling pathways in non-small-cell …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways

Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and  the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...

متن کامل

The Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer

Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...

متن کامل

Investigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach

Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...

متن کامل

Effects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells

Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...

متن کامل

The roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk

Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...

متن کامل

Intraoperative radiotherapy (IORT) induced key molecular pathways in tumor bed of breast cancer patients: a pilot study

Background: Radiotherapy (RT) is recommended to all patients undergoing Breast Conserving Surgery (BCS). Two strategies can be applied to irradiation, External Beam RT (EBRT) in addition, Intraoperative Radiation Therapy (IORT). The aim of this study was to introduce a protein biomarker panel related to molecular function of IORT. Materials and Methods: Six Breast Cancer (BC) patients as a pilo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012